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SUMMARY

An adaptive (Lagrangian) boundary element approach is proposed for the general three-dimensional
simulation of confined free-surface Stokes flow. The method is stable as it includes remeshing capabilities
of the deforming free surface and thus can handle large deformations. A simple algorithm is developed
for mesh refinement of the deforming free-surface mesh. Smooth transition between large and small
elements is achieved without significant degradation of the aspect ratio of the elements in the mesh.
Several flow problems are presented to illustrate the utility of the approach, particularly as encountered
in polymer processing and rheology. These problems illustrate the transient nature of the flow during the
processes of extrusion and thermoforming, the elongation of a fluid sample in an extensional rheometer,
and the coating of a sphere. Surface tension effects are also explored. Copyright © 2001 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The numerical simulation of transient free surface flow problems remains challenging despite
the advent of powerful techniques. Typically, a boundary value problem of the moving type,
which involves geometrical non-linearities, must be addressed. In contrast to conventional
problems in fluid dynamics, the domain of computation, which is bounded in part by the free
surface, is not known a priori since the shape of the free surface itself must be determined as
part of the solution. A number of iterations are usually needed in order to reach the precise
form of the free surface. The problem becomes even more challenging when, in addition, the
shape of the free surface evolves with time, generating large distortions in the discretized
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domain of the fluid. It is needless to say that while large distortions have been reasonably well
handled for two-dimensional free surface flows, major issues remain regarding complex
three-dimensional problems.

Several numerical techniques have been developed for the solution of moving boundary/
initial value problems. These techniques may be classified as Eulerian, Lagrangian, and mixed
Eulerian–Lagrangian [1]. In the Eulerian description of the flow the grid points remain
stationary or move in a predetermined manner [2–5]. Typically, the fluid moves in and out of
the computational cells. The method can handle arbitrarily large free surface deformations
without loss of accuracy. Its main disadvantage, however, is the lack of sharp definition of the
free surface, and the consequent difficulty of imposing the kinematic and dynamic boundary
conditions on the free surface. In the Lagrangian approach, the grid points move with local
fluid particles [6,7]. The free surface is sharply defined and it is easy to impose the necessary
boundary conditions. However, Lagrangian methods require mesh refinement or remeshing for
large deformations of the free surface. Hybrid methods have also been developed that combine
the advantages of the Eulerian and Lagrangian methods [8]. Generally, an adaptive Lagran-
gian approach becomes difficult to implement when a volume method, such as the finite
element method (FEM), is used. On the other hand, the boundary element method (BEM) is
much easier to use along with adaptive remeshing as the dimension of the problem is reduced
by one.

The BEM relates velocities at points within the fluid to the velocity and stress on the
bounding surfaces. It is thus an ideal method for studying moving-boundary problems, where
the velocity on the free surface is the quantity of prime interest. The advantages of the BEM
include a reduction of problem dimensionality, a direct calculation of the interfacial velocity,
the ability to track large surface deformations, and the potential for easy incorporation of
interfacial tension as well as other surface effects.

The present paper is part of a series of studies on the applicability of the BEM to problems
of the moving-boundary type. Such problems include the planar deformation of a drop in a
confined medium [9–11], gas-assisted injection molding [12], air venting during blow molding
and thermoforming [13], and the transient mixing of Newtonian and viscoelastic fluids [14].
The present work addresses the numerical solution of a class of moving-boundary problems in
a confined medium of the free-surface type. An adaptive Lagrangian boundary element
approach is adopted to determine the evolution of the free surface. The formulation and
numerical implementation are illustrated for a flow advancing inside and exiting a confining
cavity.

There is a number of simplifying assumptions to be adopted for the BEM to become
applicable. The inherent transient nature of the flow process and the presence of a moving free
surface make the simulation of the problem challenging because of the non-linearities involved
[1]. The challenge becomes even greater if both inertia and viscoelastic (or, more generally,
non-Newtonian) effects are accounted for. Such non-linear phenomena have been addressed in
moving-boundary problems with relevance to polymer processing. For instance, viscoelastic
effects were examined on the growth of spherical and cylindrical shells of a fluid obeying a
highly non-linear viscoelastic constitutive model [15]. It was found that even under constant
driving pressure oscillatory growth results from elastic normal stress effects. In order to assess
the mathematical intricacies in the case of pressure-driven flows, Khayat [16] examined the
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small planar deformation of a viscoelastic column of fluid obeying the upper-convected
Maxwell fluid by applying a regular perturbation approach. It was found that the governing
equations are indeed hyperbolic and therefore, unlike the Navier–Stokes equations, they can
entertain an oscillatory solution for a statically stressed fluid. The same problem was later
examined for large deformations using the FEM [17]. Non-linear effects, such as those
stemming from fluid elasticity, fluid inertia, and shear thinning, are difficult to account for in
a boundary element approach despite the advent of recent techniques to handle non-linear and
transient problems [18–21].

A simple algorithm for adaptive refinement of the (two-dimensional) triangular mesh of the
free surface is implemented. A number of algorithms for the adaptive generation of triangular
meshes have been proposed before. Some methods generate entirely new meshes [22,23], others
subdivide elements of an initial mesh [24,25], and still others can both generate new meshes
and subdivide the meshes adaptively [26]. A comprehensive survey of automatic mesh
generation algorithms is given by Sheppard [27]. In the present study, the initial mesh is
assumed to be regular so that no initial mesh refinement is needed. As the free surface evolves
with time, the triangular elements grow and become distorted. Beyond a prescribed level of
distortion, an element is subdivided into two elements. Additional nodes are added only at the
mid-side of the longest edge of the element. This method ensures the preservation of a good
aspect ratio for the elements in the mesh. Rivara [25] has implemented this method but his
procedure requires a search process to repair any incompatibilities that may be generated. Dow
and Byrd [28] also employed this approach in the refinement of regions with simple rectangular
boundaries.

The paper is organized as follows. The problem formulation is presented in Section 2, where
basic equations and boundary conditions are covered. The solution procedure, including the
time marching scheme, adaptive meshing of the free surface, determination of local curvature,
and the contact problem are discussed in Section 3. Numerical assessment and results are
covered in Section 4. Finally, some concluding remarks are given in Section 5.

2. PROBLEM FORMULATION

In this section, the governing equations, domain description, and boundary conditions are
reviewed, together with some of the assumptions taken for the moving-boundary flow of
viscous incompressible Newtonian fluids. Only low-Reynolds number flows, typically charac-
terized by small velocities, small length scales, and/or high viscosity, will be considered. In this
limit, the inertia terms in the momentum equation are negligible, so the flow is in a state of
creeping motion. The formulation is thus limited to Stokes flow.

2.1. Go�erning equations

At any instant, t, the fluid is assumed to occupy a three-dimensional region, �(t), which is
bounded by �(t). It is convenient to take �(t) as the inner domain, excluding �(t). Thus,
�(t)��(t) constitutes the domain occupied by the fluid. The fluid is taken to be neutrally
buoyant so the effects of gravity and any external body forces are negligible. The conservation
of mass and linear momentum equations are given by
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� ·u(x, t)=0, � ·�(x, t)=0, x��(t)��(t) (1)

where � is the gradient operator, x is the position vector, u(x, t) is the velocity vector, and
�(x, t) is the total stress tensor given in terms of the hydrostatic pressure p(x, t) and excess
stress tensor �(x, t). Here �(x, t)= −p(x, t)I+�(x, t), where I is the identity tensor. In the
present study, the fluid is assumed to be Newtonian, so that

�(x, t)=���u(x, t)+�uT(x, t)�, x��(t)��(t) (2)

where � is the viscosity of the fluid. The superscript T denotes the transpose of the matrix. It
is important to note that the acceleration term �u/�t in the momentum conservation equation
has been neglected, so that for a Newtonian fluid the formulation in question is not strictly
unsteady but quasi-steady. This quasi-steady state assumption is valid whenever L2/��T,
where L and T are typical characteristic length and time of the flow, and �=�/� is the
kinematic viscosity (� being the density). In the case of cavity flow, T�L/U, where U is a
typical value of the driving velocity. Thus, for the quasi-steady state assumption to be
applicable, one must have UL/��1. This is indeed typically the case for fluids of interest to
materials processing. Note also that this inequality is implied by the smallness of the Reynolds
number. Physically, the quasi-steady state approximation means that a Newtonian fluid
immediately adjusts to changes in the movement of the boundary or boundary conditions.

2.2. Domain of computation of the free-surface flow problem

There are various classes of free-surface flow problems that can be considered by the proposed
formulation, with direct relevance to polymer processing. Most notable examples are conven-
tional and gas-assisted injection molding, coating, extrusion, thermoforming, and blow mold-
ing. These problems may be conveniently divided into two categories: continuous and discrete
flows. A continuous flow involves the growing of a domain as a result of an extended influx
of fluid over a period of time, such as during injection molding and extrusion. In contrast, a
discrete flow is induced by the action of an external force, usually pressure, which acts on a
given and constant amount of fluid, such as during gas-assisted injection molding, thermo-
forming, and blow molding. The continuous flow is illustrated in Figure 1 and the discrete flow
is illustrated in Figure 2.

The flow in Figure 1 is reminiscent of the filling stage during injection molding or the
developing free-surface flow inside a duct. The boundary �(t) is composed at any time of a
part spanning the source region, �s, the wetted part of the cavity, �w(t), and the moving front,
�f(t). The wetted part of the cavity is taken to be time-dependent since it grows as more fluid
comes in contact with the wall. The overall boundary may thus be expressed as �(t)=
�s��w(t)��f(t). The liquid occupying the domain �(t)��(t) is called the melt, in reference
to polymeric liquids usually involved in injection molding.

The discrete flow process is shown in Figure 2, typically as encountered during thermofom-
ing, blow molding, and gas-assisted injection molding, and is also closely related to Taylor–
Safman viscous fingering. In practice, the discrete process (such as gas-assisted injection
molding) consists of an initial stage of a continuous process (such as conventional injection
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Figure 1. Continuous transient free-surface flow illustrated schematically with notations used. The flow
is reminiscent of the cavity-filling stage during the injection molding process or the developing

free-surface flow inside a duct.

Figure 2. Discrete transient free-surface flow illustrated schematically with notations used. The flow is
reminiscent of the gas-assisted injection molding process, thermoforming or blow molding.

molding), during which the melt is driven inside the cavity similarly to Figure 1 [35,36]. At
some stage of the process, the melt stops being injected. Instead, the existing amount of liquid
is driven by a gas (usually nitrogen), as depicted from Figure 2. There is a wetted part of the
cavity, as well as a free-surface (front), but there is no source of fluid. Instead, there is a
moving (gas/melt) interface, �f(t). In this case, �(t)=�f(t)��w(t)��f(t). The driving pressure
is often assumed constant throughout the gas region. In principle, the motion of the gas behind
the melt, and that of the air ahead, must both be accounted for, but, as a first approximation,
only the flow inside the melt region is examined.

2.3. Boundary and initial conditions

While the boundary conditions on the source and wetted cavity are straightforward to
implement, those on the melt front and gas/melt interface must be examined more closely. The
velocity is assumed to be fully prescribed along the source boundary, �s. A general flow, us(x),
usually Poiseuille flow, is imposed

u(x, t)=us(x), x��s (3a)
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If a gas/melt interface exists instead of a source, a driving (gas) pressure, �p, is assumed to
apply such that the traction at the interface is given by

t(x, t)= −�pn(x, t), x��i(t) (3b)

Here t(x, t)=�(x, t) ·n(x, t) is the traction, n is the normal unit vector at �i(t). Equation (3b)
represents the dynamic condition at the interface. The fluid is assumed to adhere to the cavity
boundary, so that stick and no-penetration boundary conditions apply on the wetted part of
the cavity

u(x, t)=0, x��w(t) (4)

The proper choice and implementation of a kinematic condition is generally not obvious [1].
The dynamic conditions on the free surface (melt front) are based on the continuity of the

tangential stress and discontinuity of normal stress caused by the interfacial tension

t(x, t)=�n(x, t)� ·n(x, t), x��f(t) (5)

where n is the normal vector outward to the front and � is the surface tension coefficient. Note
that boundary condition (5) is derived under conditions of equilibrium and uniform interfacial
tension. Its validity under dynamic conditions is simply assumed [29,30]. The condition also
assumes implicitly that the flow activity of the fluid outside the moving boundary (air) is
negligible with the (atmospheric) pressure taken as zero.

In addition, the kinematic condition is needed, which relates the evolution of the moving
boundary to the local velocity field. The moving boundary deforms in accordance with the
instantaneous velocity field, thus determining new moving boundary positions with time. In a
Lagrangian representation, the moving boundary may be assumed to deform with the fluid
velocity, such that the evolution of �f(t) and �i(t) is governed by Equation (6a)

dx
dt

=u(x, t), x��f(t)��i(t) (6a)

Although easy to implement, the resulting scheme based on Equation (6a) tends to sweep
points on the moving boundary along the tangent to the moving boundary, even if only small
shape changes take place. Consequently, frequent redistribution of the moving boundary
points or remeshing becomes necessary.

Alternatively, the moving boundary can be assumed to deform pointwise along the normal
with the normal projection of the fluid velocity at the moving boundary [1]. This method keeps
the points evenly distributed on the moving boundary. Thus, the following kinematic
boundary condition results:

dx
dt

=n(x, t)[n(x, t) ·u(x, t)], x��f(t)��i(t) (6b)
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Unlike Equation (6a), the above equation prevents the nodes to be swept along the tangent to
the moving boundary. However, it leads to numerical instability of the saw-tooth type. This
difficulty is usually circumvented by applying a smoothing technique of the moving boundary.
Given the remeshing capabilities of the present approach, the use of Equation (6a) turned out
to be the good choice for the class of problems covered in this study.

As to the initial conditions, when the fluid is assumed to be at rest initially, the following
condition is used:

u(x, t=0)�0, x��(t=0)��(t=0) (7)

Thus, the flow field is determined through the solution of Equations (1) and (2) subject to
initial condition (7) and the boundary conditions above using the boundary integral method.

2.4. Boundary integral equation

The general time-dependent integral equation for a moving domain is given by [31]

�
�(t)

t(y, t) ·J(x�y) d�y−
�

�(t)

n(y, t) ·u(y, t) ·K(x�y) d�y=c(x, t) ·u(x, t), x��(t)��(t)

(8)

Here J and K are the usual symmetric and anti-symmetric tensors with respect to r=x−y,
and are given as [31]

J(x�y)=
1

8��

�I
r
−

rr
r3

�
, K(x�y)=

3
4�

rrr
r5 (9)

where r= �r�. The function c(x,t), for x��(t), depends on the geometrical form of the
boundary; its value arises from the jump in the value of the velocity integrals as the boundary
is crossed. When the boundary is Lyapunov-smooth, which requires that a local tangent to the
free surface exists everywhere, the function c(x, t)=1/2. This is the case if constant boundary
elements are used. Thus, the assumption of boundary smoothness is generally not valid in the
vicinity of sharp corners, cusps, or edges. In general, since c(x, t) depends solely on geometry,
it may be evaluated assuming that a uniform velocity field such as u(x, t)=ue is applied over
the boundary, e being the direction of the velocity and u is its magnitude. Under these
conditions, all derivatives (including tractions and stresses) must vanish. Hence, at any time t,
Equation (8) reduces to

c(x, t)=
�

�(t)

n(y, t) · [e ·K(x�y) ·e] d�y, x��(t) (10)

Thus, at any time t, the form of the boundary �(t) is determined and the function c(x, t) is
evaluated using the above equation.
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3. SOLUTION PROCEDURE

In this section, a time marching scheme is proposed to discretize Equation (6). Once the flow
field is determined at a given time step from Equation (8), the location of the moving
boundary can be determined by solving Equation (6). As the boundary elements are distorted,
the mesh is refined through element subdivision. The problem of contact between evolving
moving boundary and surrounding cavity walls is also discussed.

3.1. Time marching scheme and mo�ing boundary e�olution

Consider now the application of the integral equation (8) for a point on the boundary, i.e., for
x��(t). The discussion is limited to the cavity-filling problem in Figure 1, with obvious
extensions to other problems. The flow field at any interior point x��(t) is obtained once the
variables at the boundary are known. Since the velocity is fully prescribed on �s��w(t), only
the traction (or stress) will be determined there. The traction is imposed on the moving
boundary, �f(t), where the value of the velocity will be found. More explicitly, Equation (8)
may be rewritten as

�
�s��w(t)

t(y, t) ·J(x�y) d�y−
�

�f(t)

u(y, t) · [n(y, t) ·K(x�y)] d�y

+�
�

�f(t)

[n(y, t)� ·n(y, t)] ·J(x�y) d�y+
�

�s

us(y) · [n(y) ·K(x�y)] d�y

=

�
�
�
�
�

c(x, t)us(x), x��s

0 x��w(t)
c(x, t)u(x, t), x��f(t)

(11)

where conditions (3) and (4) are used. The unknowns in Equation (11) are thus t(x��s��w, t)
and u(x��f, t), so that the values of the third and fourth integrals on the left-hand side are
known.

The time derivative in Equation (6) is approximated by an explicit Eulerian finite difference
scheme, with higher-order terms in the time increment, �t, being neglected. The integral
equation (10) relates the velocity and traction at the current time. Once the flow field is
determined at each time step, t, the position of the moving boundary is updated. The evolution
of �f(t) is dictated by Equation (6). The updated position of the nodes that belong to the
moving boundary is thus determined once the velocity at the moving boundary is obtained
from the solution of Equation (11).

The integrals in Equation (11) are discretized into a finite sum of contributing terms over the
boundaries. In this work, the boundary elements are assumed to be geometrically linear so that
the velocity and traction are constant over each element. This makes the proposed adaptive
remeshing method and estimation of curvature less difficult to implement since no interpola-
tion of the flow variables is needed at each time step. The use of higher-order elements is
possible, but may not be crucial given the mesh refinement and remeshing capabilities involved
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in the current procedure. The traction is constant over flat linear element, and is multiply
valued at a corner node if higher-order elements are used. In two dimensions, the traction may
be assumed to be double valued at every node of a curved boundary. Another advantage of the
constant boundary element is that the value of c(x, t) is always and everywhere equal to 1

2. In
addition, the normal vector to each element is determined exactly.

3.2. Adapti�e meshing

A simple algorithm is proposed for adaptive refinement of the triangular mesh of the evolving
free surface. The method is similar to that proposed by Nambiar et al. [32] for adaptive and
h refinement of two-dimensional triangular finite element meshes. Initially (t�0), the fluid is
assumed to occupy a three-dimensional region, �0=�(t=0), bounded by part of the cavity
(source) and free surface. Typically, at t�0, additional fluid penetrates �0 (see Figure 1) and
the volume starts to grow together with the boundary elements. At some point, some elements
become too distorted, and mesh refinement or remeshing is needed.

The refinement is carried out by subdividing the elements that are too distorted. Generally,
the criteria for subdivision are based on the element area and the length of the edges. However,
it turns out that the length of the longest edge is a reliable criterion by itself. In this case, at
each time step of the flow a list of elements is established, with the length of the longest edge
greater than an imposed tolerance, Dmax. Thus, an element is assumed to satisfy the criterion
for subdivision if its longest edge is longer than the imposed value of Dmax. The list is sorted
in the order of increasing length of the longest edges of each element. In order to avoid
generating mesh incompatibilities or elements with poor aspect ratio during refinement, larger
elements are subdivided first. The subdivision starts from the last (i.e., the longest edge)
element in the list, and is continued recursively until the list is empty. The subdivision is carried
out by bisecting the largest of the edges of the element in the list.

Two distinct cases of element subdivision arise, which are illustrated in Figure 3. The figure
displays the subdivision process for a three-dimensional surface that has expanded. In the first
case (Figure 3(a)), an element inside the domain (e.g. elements 9 and 21) is subdivided, and in
the second case (Figure 3(b)), the element has an edge on the boundary of the domain (element
14). In the latter case, the subdivision process is straightforward. Once the subdivision criteria
are reached, the element is simply subdivided into two elements. This is typically illustrated in
Figure 3(b) for element 14, which is subdivided into elements 14 and 28. In the former case,
the edge of the element is in the interior and additional options must be considered. To prevent
creation of any non-conforming interior elements, the element that shares the common longest
edge is also bisected along with the first element. Creation of four elements in such a manner
is carried out only when the bisected edge is the longest edge of both elements. If this condition
is not met, the second element is added to the end of the element list, which contains the
distorted elements so that the second element is now the current element for subdivision and
the process is repeated. Again, the element selected for subdivision will have an edge that is the
longest among the edges of the elements in the list.

In order to facilitate the searching process for the second element and the longest edge of
elements, the input data are initially processed to create three data structures, one structure
each for nodes, triangles, and edges. A node is defined by its x-, y-, and z-co-ordinate. The
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Figure 3. Adaptive meshing and element subdivision of free surface elements, for an element with the
longest edge for an internal element (a), and for an element at the boundary (b).

properties selected for a triangle are its three nodes (A, B, and C), its three edges (AB, BC, and
CA), and its area. The above information is structured such that the node numbers are ordered
in a counterclockwise direction for each element, and edge AB is the longest edge of each
element. The properties of an edge are its two end nodes, its two neighboring triangles, and the
length of the edge.

The major advantage of dividing only the largest edge in a triangle is that the smallest angle
in the original mesh is not further subdivided. If the largest angle C is greater than 90° none
of the newly created angles can be smaller than the original smallest angle A. If C is equal to
90° the smallest angle A is duplicated as D. If, however, C is smaller than 90° the newly created
angle D is slightly smaller than A. Further, if an angle A is smaller that 60°, it will never be
bisected using this algorithm. Rosenberg and Stenger [33] have shown that the smallest angle
that can be created in any subsequent mesh produced by the above method is bounded by half
the minimum angle present in the initial mesh. Thus, the aspect ratio of the triangles in the
mesh remains in an acceptable and known range. The process of subdivision shown in Figure
3(a) illustrates the general sequence of mesh refinement. Elements 7 and 9 are first subdivided
each into two triangles; element 7 is now divided into the current elements 7 and 24, while
element 9 is divided into one triangle currently composed of 25 and 30, and another currently
composed of elements 9 and 27. Subsequently, element 21 is subdivided into elements 21 and
29, along with an element currently composed of 25 and 30. Similarly, element 8 is divided into
elements 8 and 26, along with the element currently composed of 9 and 27.
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The first step in the solution procedure consists of creating the data file containing the
description of the problem domain, boundary conditions, loading, and initial mesh. The initial
mesh is first examined to check for initially distorted elements. This mesh comes from a
computer aided design (CAD) system, such as I-DEAS, PATRAN, or PROENGINEER. The
initial mesh is then refined by the adaptive remeshing scheme described above. An example is
given in Figure 4, where the discretization of a cylindrical wedge is shown for three values of
Dmax. The mesh (Dmax�	) corresponds to the coarse mesh provided by I-DEAS with no
mesh refinement. The wedge height-to-radius ratio is 0.5. The figure displays two levels of
refinement. For Dmax=1.2, the triangular (right) elements in the initial mesh are divided into
two elements each. When Dmax is decreased further to Dmax=0.7, each previous element is
further subdivided into two.

3.3. Determination of local cur�ature

The value of the curvature at a particular location (node or element) on the free surface is
needed if surface tension is accounted for. The curvature is obviously related to the divergence
of the normal vector n(x, y, z, t) at the location in question. Thus, the determination of the
curvature is based on the estimation of the derivative of the normal vector components in the
three directions. For this it is convenient to define local co-ordinates (�, 	, n) spanned by the
plane tangent to the surface at the local point and the normal to the plane.

Figure 4. Influence of Dmax on element subdivision for a cylindrical wedge of unit radius and height
equal to 0.5. The figure shows the initial mesh in the absence of remeshing (Dmax�	) and two refined

meshes for Dmax=1.2 and 0.7.
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Consider now the curvature at an element (centroid) of the discretized surface. The
curvature is estimated directly at the centroid of the element rather than on a smooth
interpolated surface going through the element vertices. Surface interpolation and fitting can
be very costly. Generally, each node of the triangle belongs to an arbitrary number of
elements, and the normal at the node is not uniquely defined. The normal vector is then taken
as the area average of the normal vectors to the elements to which the node belongs. The
normal vector anywhere to the element, with vertices 1, 2, and 3, may then be generally written
as

n(x, t)= �
3

i=1

ni(t)
i [�(x, t), 	(x, t)] (12)

where ni(t) are the normal vectors at node i and 
i(x, t) are suitably introduced interpolation
functions. In this work, given the fact that flat triangular elements are used, 
i(x, t) are taken
to be linear. The partial derivatives of the normal vector are obtained by differentiating
Equation (12). If the (�, 	) co-ordinate axes are taken to lie in the plane of the element, then

� ·n=
�n�

��
+

�n	

�	
(13)

and the curvature is just given by−� ·n/2. This procedure is now validated by computing the
curvature for simple surfaces, discretized into triangular flat elements. Two examples are
treated; namely, the case of a spherical shell of radius equal to one, and the case of a parabolic
surface.

3.3.1. Case of a spherical surface. Two mesh sizes are considered for the sphere of radius one.
The first mesh consists of 72 elements and 38 nodes, and the second of 272 elements and 138
nodes. The curvature in this case, with the normal vector pointing outward, is equal to −1.
The computed curvature for the sphere composed of 72 elements lies within the interval
[−0.912, 0.885]. The average value of the curvature is equal to −0.903, which corresponds to
a global error of 9.7 per cent. For this mesh, the small dispersion in the numerical values of
the curvature indicates that the uniformity in the mesh is preserved. The curvature is computed
at the centroid of the elements. Given the construction of the mesh, which places the nodes on
a sphere of radius one, the centroids do not coincide exactly with the sphere. The deviation in
position between the centroids of the elements and the corresponding position on the sphere
is typically equal to 8 per cent. This value is of the same order of magnitude as the error in
the estimation of the curvature. The results of the numerical computation of the curvature for
this mesh are thus conclusive: the uniformity of the entire mesh is preserved, and the resulting
error corresponds to that of the mesh size. This consistency is not always achieved for any
mesh as the next case shows.

The influence of mesh size on the computed curvature is examined by considering the mesh
of 272 elements. In this case, the computed average curvature is found to be closer to −1,
namely, −0.95. However, the difference between the maximum and the minimum values is
larger. The former is equal (in magnitude) to −1.25, and the latter is equal to −0.68. These
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extreme values correspond to regions where the elements are not regular. A curvature can have
a magnitude that is too small, for instance, two or more elements happen to lie almost in the
same plane. The opposite is true when, for instance, the planes of two elements make an angle
of less than 90°. These mesh irregularities do indeed happen and there is little that can be done
to control them. Localized errors can be large, exceeding 30 per cent for a couple of nodes in
the present example. However, if the couple of irregular points are excluded, the average error
in the computed curvature is only 3 per cent, which also corresponds to the error in the
location of the centroids of the elements relative to a sphere of radius one.

This second mesh confirms that a good estimate of the curvature depends on two major
factors: mesh size and regularity. Obviously, a finer mesh leads globally to an accurate estimate
of the curvature. However, strong irregularity results in large errors locally. The accuracy of
the current method hinges on the accuracy of the normal vectors at the nodes and (their
average) over each element. It is thus essential to start with an optimized original mesh.

Indeed, four mesh sizes are examined that help establish the convergence rate with mesh
refinement. The meshes are generated with reasonable regularity. The mesh sizes considered
correspond to 192, 312, 406, and 600 elements. The resulting average relative error and
standard deviation for each mesh size are reported in Table I. The error and standard
deviation decrease with mesh refinement, confIrming the convergence of the current procedure
for estimating the curvature.

3.3.2. Case of a parabolic surface. Consider the case of the surface defined over the octant
x, y, z�0 by the relation x=16y(y−1)z(z−1). Comparison between the analytical and
numerical curvatures indicates a large disparity in error. The error is found to be much larger
along the edges, especially around the corners, compared with the core region. The mesh is not
optimized along the edges. Although the mesh chosen is relatively fine, the discretized surface
does not adhere well along the edges. As in the case of the sphere, all nodes coincide with the
analytically prescribed surface, but the deviation between the element centroids and the surface
can exceed 40 per cent in the corner regions. The normal vectors to these elements are thus
inaccurately estimated. Consequently, the estimation of the curvature, which is based on that
of the normal vectors, is expected to be inaccurate in the corner region.

From a practical point of view, the inaccuracy in the curvature value along the edges and
corners for the present case does not pose any problem. This is confirmed upon comparison
of the analytical curvature with the computed ones for the four different mesh sizes as shown
in Figure 5. The figure indicates clearly that the curvature increases sharply as one moves from
the edges to the core region. There is a flattening of the surface along the edges. Consequently,

Table I. Influence of mesh size on the accuracy in estimating the curvature for
a sphere.

Number of StandardRelative
elements error deviation

192 0.0302 0.0291
312 0.0175 0.0170

0.0148 0.0145406
0.0125 0.0123600
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Figure 5. Influence of mesh size on the curvature of a parabolic surface, z=16x(x−1)y(y−1). The
figure shows the curvature vs y along the mid-section at x=0.5.

the curvature becomes small enough to be considered essentially zero, leading to no significant
loss in the accuracy in the estimation of surface tension effects.

Generally, the rate of convergence with mesh refinement is good, as Table II indicates. Four
meshes are used which consist of 100, 400, 900, and 2500 elements. Each mesh is constructed
on the basis of the imposed number of nodes along the y- and z-axes. The relative error varies
from 0.524 for the coarsest mesh to 0.046 for the finest, and the standard deviation varies from
1.910 to 0.044. The curves in Figure 5 also reflect the fast rate of convergence of the proposed
algorithm. The figure displays the behavior of the curvature along the y-axis at z=0.

In conclusion, the proposed scheme for the estimation of the curvature depends strongly on
the mesh of the discretized surface. The major influencing factors that lead to a good estimate

Table II. Influence of mesh size on the accuracy in estimating the curvature
for a parabolic surface.

StandardRelativeNumber of
elements error deviation

0.524100 1.910
400 0.180 0.213
900 0.0900.097

0.0440.0462500
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are: the mesh size, the mesh regularity, and a good estimate of the normal vectors to the
elements.

3.4. Contact between free surface and confining wall(s)

Initially, the fluid is assumed to occupy a prescribed volume, �0, which is taken as the starting
step for the computation. Typically, �0 is bounded by a source surface and the free surface.
The source surface is assumed to be part of the cavity at all times. The initial volume of fluid
is thus in contact with the cavity only at the intersection of the free surface and the source
surface. The free surface mesh is independent of the source surface mesh. The mesh of the
source surface does not change with the subsequent motion. In fact the source area is part of
the cavity and its mesh coincides with that of the cavity.

The cavity walls are discretized into an appropriate number of elements that serve only to
confine the fluid but do not come into the flow calculation. The number of cavity elements can
thus be arbitrarily large, leading to an accurate representation of the cavity shape. This is
particularly advantageous for practical situations where the geometry is typically complex.
Obviously, the mesh density of the evolving free surface need not match that of the
surrounding cavity. In other words, the accuracy in cavity representation is usually far superior
to that of the surface bounding the moving fluid. A node or element that comes in contact with
the wall is assumed to subsequently adhere to it. Contact is assumed to be established once the
fluid has come to within a certain distance to the cavity wall, which is usually taken to be of
the order of an element size. In fact, contact usually occurs once the node has intersected and
penetrated the cavity surface. Obviously, the error generated in this case is controlled by
decreasing the time increment. The influence of the time increment will be assessed below.

The boundary conditions imposed at a given element depend on whether the element
belongs to the free surface or the cavity. As mentioned above, initially the domain boundary
consists of a free surface and a source surface. At the free surface, conditions (6) and (7) apply.
The flow is entirely specified at the source surface. It is either of the Poiseulle or plug flow
type. These boundary conditions remain applicable as the flow evolves during the early stages,
until the free surface comes in contact with the surrounding cavity wall. At the contact region,
which may be simply or multiply connected, the boundary conditions change from those on a
free surface to stick conditions at the wall.

4. DISCUSSION AND RESULTS

The potential of the formulation and solution procedure is demonstrated for three-dimensional
complex flow configurations of the moving boundary type, with emphasis on transient
problems from polymer processing. In particular, illustrations are borrowed from the processes
of extrusion, thermoforming, extensional flow, as well as surface coating, including the effects
of surface tension. The numerical accuracy is first assessed by examining the influence of the
mesh size for a developing free-surface flow inside and out of a circular and a square tube.
Given the similarity characteristic of the Stokes equations, all results are reported in dimen-
sionless form.
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4.1. Transient extrusion through circular and square dies

The proposed formulation is first illustrated for the flow through and out of a circular and a
square die. The flow out of a duct is essentially the transient stage of the extrusion of a solid
circular or square cylinder. That is, the flow is examined as the fluid emerges at the exit of the
tube. The diameter (side)-to-length ratio of the tube is equal to one. Poiseuille flow is imposed
at the entrance to the tube (away from the front). Surface tension effects are neglected at first
but will be examined shortly.

Consider first the flow inside and out of a circular die. Note that although the flow is
axisymmetric, the calculations are carried out for a three-dimensional problem. The resultant
sequence of flows is displayed in Figure 6 at three time stages. The fluid is assumed to flow
inside the tube before it actually reaches the tube exit, and then emerges out of it. The tube
acts only as a confining wall to the developing flow, and is not shown in the figure. In fact,
the tube is generated by the freezing (adherence) of the fluid surface as the fluid reaches the
unit radius. Initially, the fluid volume is limited to an almost flat surface. In fact, the free
surface is initially taken to be parabolic with a height equal to one-tenth the radius of the base.
As the flow develops, the fluid moves freely inside the tube (without touching it) until it comes
in contact with the surrounding wall (Figure 6; t=0.5). As the fluid emerges out of the tube
(Figure 6; t=1.2) it experiences a degree of swelling at the exit which increases with time. A

Figure 6. Transient extrusion of a solid circular cylinder with no surface tension. Early stage of flow at
t=0.5, intermediate stage at t=1.2 when the fluid begins to exit the tube, and long-term behavior at

t=2.5 with almost steady state conditions downstream from the exit.
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Figure 7. Influence of time increment on the evolution of front tip for the flow in Figure 6. Here
Dmax=0.5 and 0.01
�t
0.1.

swell ratio of approximately 10 per cent is eventually established as steady state conditions
near the exit are established (Figure 6; t=2.5). This is in agreement with existing steady state
calculations [34].

The influence of the time increment and mesh size is an important issue for any type of
numerical method. These two parameters are now examined as they affect the accuracy of
calculations in the present problem. Figure 7 shows the influence of the time increment, �t, on
the evolution of the front tip position, Xmax, with time equal to over 3.5 time units. In this case,
Dmax is kept equal to 0.5 and 0.01
�t
0.1. The figure shows, as expected, that the evolution
of the front tip (and flow) is affected by the time increment. However, the influence of �t is
relatively minimal as Figure 7 suggests; the difference is only a few per cent at most when �t
is raised by one order of magnitude, from 0.01 to 0.1. The rather insignificant influence of the
time increment is of course encouraging, as considerable CPU can be saved when dealing with
complex three-dimensional free-surface flows. At least for the array of problems covered so
far, it is found that the influence of time increment depicted in Figure 7 is typical. This
relatively little influence of the time increment is contrasted by the strong effect that the mesh
size can have on the numerical accuracy.

The influence of mesh size is found generally to be more important than that of the time
increment. This influence is depicted from Figure 8 for Dmax� [0.6, 0.75]. The figure shows the
evolution of the relative error on the volume of fluid for each value of Dmax. The error is equal
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Figure 8. Influence of mesh refinement on the relative error for the extrusion of a solid cylinder. The
error is based on the difference between the computed and theoretical volumes of fluid with time. Here

Dmax� [0.6, 0.75] and �t=0.1.

to the relative difference between the volume of fluid at time t and the theoretical amount of
fluid that is supposed to have emerged at the exit of the tube during the time t. The figure
clearly shows that the overall error decreases as Dmax decreases. For any Dmax, the error is also
found to generally decrease with time, except for the lower Dmax value considered. There is an
initial error that is obviously larger when Dmax is large, since the volume of the initial fluid is
poorly approximated as a result of the crude mesh used in the surface discretization. In this
case, the initial error at t=0 is maximum. As Dmax decreases the maximum in error is shifted
from t=0, but a maximum seems to always exist. It is interesting to observe that the influence
of Dmax is greatest in the initial stages of flow. The error appears to continuously decrease at
the later stages of the flow. There is an initial error that is obviously larger when Dmax

increases. The initial error (for t�0.5) is the same for Dmax=0.75, 0.70, and 0.65. This stems
from the fact that there is no element subdivision initially for this range of Dmax values.

Consider next the flow through and out of a square die. The length-to-side ratio is equal to
one. Poiseuille flow is imposed upstream of the exit. The resultant sequence of flows is
displayed in Figure 9 at three time stages. The fluid is assumed to flow inside the tube before
it actually reaches the tube exit, and then emerges out of it. Initially, the fluid volume is limited
to an almost flat surface. As the flow develops, the fluid moves freely inside the tube until it
comes in contact with the surrounding wall (t=0.4). As the fluid emerges out of the tube
(t�1), it experiences a degree of swelling at the exit that increases with time. A swell ratio of
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Figure 9. Transient extrusion of a solid square cylinder with no surface tension. Early stage of flow at
t=0.4, intermediate stage at t=1.5 when the fluid begins to exit the tube, and long-term behavior at

t=2.5 with almost steady state conditions downstream from the exit.

approximately 10 per cent is eventually established as steady state conditions near the exit are
established (t=2.5).

Further calculations were also carried out including surface tension effects. Since one of the
major objectives of the simulation is to examine the evolution of the shape of the front during
a given process, the influence of surface tension becomes important. It is interesting to observe
that surface tension plays a similar role to fluid elasticity, as it opposes flow. Here the influence
of surface tension is explored for the transient extrusion through a circular and a square die.
Figure 10 shows the evolution of the front tip position, Xmax, during the extrusion of the
circular cylinder, over a period of 3.5 time units, as function of time for Ca−1� [0, 7]. The
figure indicates clearly the prohibiting effect of surface tension on the motion of the melt front.
The figure shows a considerable decrease in the rate of advancement of the fluid tip as surface
tension increases.

A similar effect of the surface tension is observed during the extrusion of the square cylinder.
Figure 11 shows the flows at t=2.5 for Ca−1=0, 2, and 5, which are labeled (a), (b), and (c)
respectively. The shape of the front is drastically influenced by surface tension effect. In fact,
in the absence of surface tension, the flow has a tendency to emerge like a jet, thrusting
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Figure 10. Influence of surface tension on the evolution of the front tip during the extrusion of a solid
circular cylinder as in Figure 6. Here Ca−1� [0, 7].

forward with little swell (roughly 10 per cent). As surface tension is added, the level of swell
increases, making the front more rounded, with a swell of more than 12 per cent (Figure
11(b)). Finally, in the presence of higher surface tension (Ca−1=5), the flow tends to move
laterally, almost with adverse flow, leading to the mushroom-like shape depicted in Figure
11(c), with a swell of more than 15 per cent. It is not difficult to appreciate the significant
influence that surface tension can have in materials processing. This is of course obvious in the
present case of the extrusion of a square cylinder. Although surface tension is usually negligible
for most liquid melts used in polymer processing, the illustrations in Figures 10 and 11 are still
of relevance to interfacial flow, such as during co-extrusion. It is the level of swell that is of
interest in practice.

Finally, the effect of surface tension is further analyzed by comparing the swell for circular
extrusion to that of square extrusion. Figure 12 shows the flow in both cases at t=2.5 and
Ca−1=5. It is interesting to observe that, although the die geometry is different, the shape of
the front is very similar. Note that this similarity is not present in the absence of surface
tension, as is easily inferred by comparing the flow at t=2.5 in Figures 6 and 9. This
comparison shows that the fluid keeps the square shape as it emerges out of the die. In
contrast, Figure 12 indicates that surface tension tends to round the edges at the exit of the
square die. This is, of course, a result of the relatively high normal force acting in the corner
regions, which prevents the fluid from expanding, and letting the fluid far from the corners
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Figure 11. Influence of surface tension for the transient extrusion of a solid square cylinder as in Figure
9 at t=2.5, for Ca−1=0 (a), 0.2 (b), and 5 (c).

swell at a relatively faster rate. Although surface tension effects may not be significant in
material processing, especially for polymers, the similarity in Figure 12 can have a drastic
implication in practice in processes involving interfacial flow, such as during the co-extrusion
or co-injection molding of two materials.

4.2. Flow during the thermoforming process

This is the second category of problems that is addressed in the present study. In this case, the
flow is induced by the deformation of a free surface as a result of a pressure force acting on
it. In the thermoforming (or blow molding) process, the pressure acts on one of the two free
surfaces. The second surface is traction-free. The process consists of forcing the fluid sheet
inside a mold until the (traction-free) free surface embraces completely the inner walls of the
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Figure 12. Effect of surface tension on the swell ratio at t=2.5 and Ca−1=5 for the flow out of a
circular die (a) and out of a square die (b).

mold cavity. In practice, the thermoformed part undergoes additional deformation, in the form
of warpage and shrinkage, which is caused by the build-up of residual stresses resulting from
elastic and non-isothermal effects. The present simulation is only an approximation to the real
process since the flow is assumed to be inelastic and isothermal.

Consider the thermoforming of a square thick sheet of length-to-thickness ratio equal to 20.
The situation is schematically illustrated in Figure 2. The fluid is assumed to deform inside a
square cavity of depth equal to twice the sheet thickness. The objective of the simulation is to
find the thickness distribution of the deformed fluid medium. The thickness distribution of the
thermoformed part is the most crucial characteristic targeted during the process. Obviously, if
the initial thickness is uniform, as in the present example, then the final thickness distribution
will not be uniform. In practice, the initial thickness is pre-programmed iteratively until the
desired final thickness distribution is reached. This results in a large number of costly
trial-and-error operations in order to reach optimal processing conditions. The present
simulation is an illustration of how CAD can be used to reduce the number of the iterative
operations.

The fluid is assumed to be clamped at all times along the four edges. Since the problem is
symmetric, only the quarter of the domain is considered. Thus, the initial domain of
computation is taken as [0, 0.1]× [0, 1]× [0, 1] along x, y, and z respectively. The pressure is
applied on the plane x=0 initially. The faces y=0 and z=0 are fixed. The adherence and
no-penetration conditions are applied at the planes y=0 and z=0, whereas symmetry
conditions are applied at the planes y=1 and z=1. There is a pressure force, n, of unit
strength, which acts continuously on the lower surface, S1, which is located initially at x=0,
where n is the normal unit vector to S1. The second free surface, S2, which is located initially
at x=0.1 is assumed to be traction free. Thus
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Figure 13. Transient thermoforming of a square sheet. Only one quarter of the domain is shown of unit
half side and initial thickness equal to 0.1. Initial shape and mesh (t=0). Final stage, after forming is

completed at t=1.3. Here Ca−1=0.

t(x�S1, t)= −n(x�S1, t), t(x�S2, t)=0 (14)

These dynamic conditions hold in the early stages of flow. When surface S2 touches the mold,
the fluid is assumed to subsequently stick to the mold wall.

Figure 13 shows the initial stage (t=0) and the final stage (t=1.3). The initial number of
elements is equal to 116 with 90 nodes. The initial mesh size is unimportant since remeshing
is done at any time once a Dmax value is imposed. For the present problem, Dmax=0.3 and
�t=0.0015. This step size turned out to be appropriately small for the free surface nodes not
to exceed too much the mold upon contact. Note that the mold here is simple enough not to
require any meshing. In this case, the mold geometry is specified plane by plane. However, the
algorithm can handle any mold shape, which, when complex, must be geometrically specified
through a proper mesh.

From a practical point view, the thickness is probably the most important characteristic of
a thermoformed part. The evolution of the thickness in the mid-section of the part is shown
in Figure 14. The figure shows the section of the part in the (x, y) plane at z=1 between the
initial and final time, after 1.1. The early stage, corresponding to unconfined free surface flow
is typically shown at t=0.0025. This stage lasts until (roughly) 0.004, when the upper free
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Figure 14. Evolution of the thickness distribution during the thermoforming process. The figure shows
the unconfined flow in the early stages (t�0.004), early contact with upper wall of the mold at x=0.2

at 0.004.

surface comes in contact with the mold wall x=0.2, typified by the stages t=0.0045 and
0.025. It is important to note the small time scale over which most of the filling stage takes
(less than 0.1 time unit). Although the rate of filling depends on the magnitude of the driving
pressure, it is typically short. The filling stage is essentially completed after t=1.1 as shown in
Figure 14. At this stage, the thickness has lost its uniformity. Pronounced thinning occurs near
the corners, accompanied by a bulge in the middle.
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4.3. Extension of a cylindrical fluid

Consider the extension of a fluid sample between two plates that are displaced at a certain rate.
This is the classical flow configuration encountered in rheometry. Equivalently, the traction
may be imposed at the plates rather than the displacement. Thus, knowing the traction (stress)
and the rate of displacement, the fluid properties can be inferred from the kinematic
measurements. In this section, the extension flow of a cylindrical sample will be examined. The
initial cylindrical fluid sample is drawn by the two plates at the same constant but opposite
velocities in the axial direction. Since the configuration is axisymmetric, only one eighth of the
problem will be analyzed. The influence of surface tension will be examined as well. Numerical
accuracy is assessed by examining the influence of the mesh size.

The initial and final configurations are shown in Figure 15. Consider the initial configura-
tion (t=0), which corresponds to a fluid cylinder of initial radius-to-height ratio equal to one.
The cylinder ends are assumed to each adhere to the moving plates. The co-ordinate frame of
reference is taken as shown in the figure. The origin and the (y, z) plane are located halfway
between the two plates. This is an unconfined flow, i.e., the boundary conditions do not
change with time since no additional contact between fluid and rigid wall occurs. The domain
of computation is given by the set

{(x, y, z)��y2+z2
r(x, t), x� [0, h(t)] }

where r(x, t) is the local radius of the fluid and h(t) is the half height. Note that r(x, 0)=1 and
h(0)=0.5.

The dynamic condition at the (only) free surface, S(t), is given by

t(x�S, t)= −Ca−1n(x�S, t)� ·n(x�S, t) (15)

Figure 15. Extension of a cylindrical fluid sample. The figure shows (a) one eighth of the initial sample
(t=0), and (b) one eighth of the stretched sample (t=2.4).
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It is clear from the radial and vertical scales in the figure that the triangular elements in
the initial mesh are too stretched. This initial ill-conditioning is, however, only temporary
as the elements are subsequently subdivided. The mesh regularity is also evident from the
flow at t=2.4 in Figure 15 The details of the flow field is shown in Figure 16 during the
extensional flow process at t=2.4. There is a strong axial flow as a result of the stretching
in the x-direction. The radial flow is obviously most pronounced in the (y, z) plane, and is
felt throughout the fluid, especially in the lower mid region between the (y, z) plane of
symmetry and the plate that is pulling the fluid, as shown in the (x, z) plane. There is a
strong axial flow as a result of the stretching in the x-direction. Note that the absence of
arrows on the free surface is not an indication of an absence of flow activity on the
surface.

The influence of surface tension is explored for the cylindrical sample of Figure 15.
Figure 17 shows the evolution of the sample diameter D0 at z=0 as function of time for
Ca−1� [0, 6]. The figure indicates clearly that D0 decreases with time and surface tension
tends to accelerate the drop in the diameter. While the change in the rate of decrease is
always postive in the absence of surface tension, it changes sign at some time for Ca−1�0,
reflecting an enhanced drop in the diameter with time.

The influence of the mesh size is examined to assess its effect on the numerical accuracy.
Figure 18 shows the evolution of the relative error with time, which, as in thermoforming,
is equal to relative change in volume. A relatively large time increment is used, �t=0.2.
The figure shows the evolution of the error for Dmax� [0.8, 	). Note that an infinite value
for Dmax corresponds to no remeshing. The figure indicates the growth is monotonic
for any mesh size. In fact, the error grows linearly in the absence of remeshing. As

Figure 16. Flow field during the extension of the fluid sample in Figure 14 at t=2.4.
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Figure 17. Influence of surface tension for the transient extrusion of a solid square cylinder as in Figure
14. Here Ca−1� [0, 7].

remeshing is used, the error tends to taper off after an initial linear growth that is present
for the higher Dmax values. The error growth is effectively controlled by lowering Dmax,
which is limited to less than 2 per cent for Dmax, which corresponds to a relatively large
mesh size.

Figure 18. Influence of mesh size for the extension of a fluid sample for Dmax� [0.8, 	).
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4.4. Coating of a spherical object

Coating is another important problem in material processing. Several variants of this process
exist, including blade coating and wire coating, Most coating processes are typically analyzed
under steady state conditions, as the long-term behavior is of practical interest since the
process is usually continuous as it involves the coating of long sheets or wires. When discrete
parts are coated, however, transient effects become important. In fact, steady state conditions
never really set in because the part is dipped in or sprayed by the coating material. The
problem considered in the present section is the coating of a spherical object by a jet of fluid.
The first problem examined is that of a sphere centered on the axis of the jet, x, and the second
deals with a sphere located off axis. All dimensions are given relative to the jet radius at the
exit. In both problems, the sphere has a radius equal to 0.75 and is centered at a unit distance
from the plane of the jet exit. The influence of surface tension is also examined.

Although the first problem is axisymmetric, it will be analyzed using the three-dimensional
formulation and algorithm developed earlier. An important reason for choosing an axisymmet-
ric flow configuration is to demonstrate the robustness of the proposed methodology. As will
be seen, there is essentially no deviation of the three-dimensional flow from axisymmetry
despite the large number of elements involved and the long time over which the simulation is
performed. Figure 19 shows two stages of the coating process over a time period equal to 7 in
the absence of surface tension (Ca�	). The early stage of flow is shown at t=0.8 after the
jet has just touched the sphere at x=1. A certain degree of swelling is visible. Note that the
sphere is invisible as the fluid enrobes it. At an advanced stage, t=7, the fluid remains
separated in the wake of the sphere.

In the presence of surface tension, the coating process is expected to become more difficult.
Indeed, Figure 20 displays the flow configuration at an early stage (t=0.8) and at an advanced
stage (t=8) for Ca=0.2. In this case, the fluid tends to move radially as opposed to the axial
movement observed in Figure 19. Even at this advanced stage, the fluid is incapable of
covering the sphere. Surface tension effects are obviously present in regions of high curvature,
particularly at the most advanced part of the fluid. Comparisons between Figures 19 and 20
indicate that the coating fluid is likely going to be more viscous for a larger surface.

Finally, the coating of a sphere located off axis is examined in the absence of surface
tension. The center of the sphere is located above the jet axis at (1.75, 0, 0.5). In this case, one
expects the coating to be practically impossible, at least with a jet of small radius at the exit.
This is inferred from the simulation shown in Figure 21, which shows the flow at two stages,
t=0.3 and 6. It is clear from the early stage that the flow essentially moves only under the
sphere. Even at t=6, the flow continues to flow under the sphere, with very little flow above
it.

5. CONCLUSION

The simulation of three-dimensional transient free surface flow is carried out for case studies
from material processing. An adaptive Lagrangian three-dimensional boundary element ap-
proach is proposed for the flow of Newtonian viscous fluids. The mesh refinement algorithm
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Figure 19. Coating of a sphere centered on the jet axis in the absence of surface tension. The figure
shows the flow just as it comes in contact with the sphere (t=0.8), and after the flow has surrounded the

sphere (t=7).
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Figure 20. Coating of a sphere centered on the jet axis in the presence of surface tension (Ca−1=5). The
figure shows the flow just as it comes in contact with the sphere (t=0.9), and after the flow has begun

to surround the sphere (t=8).
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Figure 21. Coating of a sphere centered below the jet axis in the absence of surface tension. The figure
shows the flow just as it comes in contact with the sphere (t=0.3), and after the flow has begun to

surround the sphere (t=0.6).
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is simple and yet is found to be robust and suitable for moving free surface flow. The method
is illustrated through transient extrusion of a solid circular and square cylinders showing no
limitation as the degree of deformation or flow in the absence or presence of surface tension.
Other flow configurations were also considered, such as the thermoforming of a fluid sheet, the
extension of a cylindrical fluid sample, and the coating of a sphere.

Future work is currently undertaken to extend the present formulation to more complex
problems in polymer processing and multiphase flow. Additional convergence and accuracy
assessment is needed to confirm the validity of the method in more complex flow configura-
tions. Direct comparative studies with existing numerical results would have been helpful.
However, to the author’s knowledge, there has not been a numerical implementation for the
three-dimensional viscous flow against which comparison can be made.
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